The truth...bit by bit

Dr Christopher Swan, 2017
Infectious Diseases Advanced Trainee
Concord Repatriation General Hospital
NSW, Australia

Shared with permission
Case Presentation of Mr. AF

• Asked to review patient in ED presenting with “sepsis of unknown origin”

• HPI
 – 42 M presented 7/2/17
 – Fevers, malaise, night sweats, and rigors for ~2 weeks
 – Abdominal pain (colicky, constant, generalised) ~3 days
Case Presentation of Mr. AF

• HPI
 – No back or joint pain
 – No chest pain, cough, or dyspnoea
 – No coryza or sore throat
 – No diarrhoea, nausea, or vomiting
 – No urinary symptoms
Case Presentation of Mr. AF

• PMH:
 – *Chlamydia trachomatis* urethritis (2001)
 – Q fever (~2000)
 – Scarlet fever (~1980)

• Medications:
 – None

• Drug hypersensitivities:
 – None
Case Presentation of Mr. AF

- Social history:
 - Smoking: Current, 15-20 cigarettes/day
 - EtOH: None
 - Illicit drug use: Crystal methamphetamine ingested every 1-2 months, last use ~1 month ago, never injected or smoked
Case Presentation of Mr. AF

• Social history:
 – Employment:
 • Labourer currently (NorthConnex)
 • Abattoir worker previously
 – Living situation:
 • Strathfield (friend’s house), moved from Bourke in January 2017
 • 4 children reside with ex-wife in Bourke
Case Presentation of Mr. AF

• Social history:
 – Animal contacts:
 • None
 – Travel history:
 • Domestic travel to Queensland (Gold Coast and Toowoomba) January 2016
 • International travel to Canada and USA ~2001
Case Presentation of Mr. AF

• Examination
 – Vital signs:
 • HR: 78 bpm
 • BP: 115/70 mmHg
 • RR: 18 breaths/min
 • S_pO_2: 98% (room air)
 • T: 38.2 °C
Case Presentation of Mr. AF

• Examination
 – Gastrointestinal:
 • Abdomen soft
 • Murphy’s sign negative
 • Tenderness to palpation, percussion, and rebound over right iliac fossa
 – Cardiovascular, musculoskeletal, and respiratory:
 • NAD
Case Presentation of Mr. AF

• Investigation findings:
 – EUC, CMP: N
 – LFT:
 • Bilirubin 5 µM
 • Albumin 35 g/L
 • Protein 80 g/L
 • ALP 60 IU/L
 • GGT 94 IU/L
 • ALT 141 U/L
 • AST 36 IU/L
 – Lipase: 14 IU/L
Case Presentation of Mr. AF

• Investigation findings:
 – FBC:
 • WCC 11.9 (Nφ 7.8, Мφ 1.7, Еφ 0.1, Вφ 0.0)
 • Hb 122 g/L
 • PtC 203
 – CRP 264 mg/L
 – X-ray chest: NAD
Case Presentation of Mr. AF

• Impression:
 – Sepsis and right iliac fossa peritonitis – appendicitis to be excluded

• Suggest:
 – Blood culture and urine m/c/s
 – Ceftriaxone + metronidazole
 – CT abdomen + pelvis
 – Surgery review for admission

• Progress
 – Colorectal Surgery team review and admission
 – CT abdomen and pelvis
Case Presentation of Mr. AF

• Progress
 – Colorectal Surgery team review and admission
 – CT abdomen and pelvis
Case Presentation of Mr. AF

- CT abdomen and pelvis 7/2/17
 - Liver: Poorly-defined hypodense subcapsular lesion (56 x 31 x 47 mm) in segment 6/7 with periportal oedema and subphrenic fluid ?hepatic abscess
 - Left kidney: Poorly-defined hypodense lesion (30 x 28 x 34 mm) in upper pole ?abscess, infarct, or neoplasm
 - Caecum: Mural thickening for ~50 mm with mild fat stranding and numerous small pericolic lymph nodes ?cancer ?colitis
 - Appendix: Fluid-filled and mildly thickened (8 mm diameter) ?obstruction by caecal abnormality
Case Presentation of Mr. AF

• US abdomen 8/2/17
 – Appendix and caecum: Hyperaemia and thickening without peristalsis ?colitis
 – Liver: Hypoechoic subcapsular lesion (3.6 x 4.2 x 6.5 cm, 51ml) in segment 6 with porta hepatis lymphadenopathy but without internal blood flow ?abscess
 – Left kidney: No lesion demonstrated
Case Presentation of Mr. AF

• Summary
 – 42 M with subacute abdominal pain/tenderness and sepsis and caecal, kidney, and liver lesions on imaging
• Differential diagnoses?
• Difference between CT and US findings in left kidney?
• Retrospective study of 62 patients hospitalised with acute renal infections
• 15 patients with renal abscesses investigated with both CT and US
• Computed tomography
 – Sensitivity: 93% (14/15)
 – Specificity: 100% (15/15)
• Ultrasonography
 – Sensitivity: 47% (7/15)
 – Specificity: 100% (15/15)
Case Presentation of Mr. AF

- Blood cultures x 2 sets: No growth
- Urine m/c/s: negative
- CA19.9: 7 kU/L (NR: ≤37 kU/L)
- CEA: 0.9 μg/L (NR: ≤3 μg/L)
Case Presentation of Mr. AF

- Faeces bacterial PCR

<table>
<thead>
<tr>
<th>Date</th>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-02-2017 13:30</td>
<td>Faeces Bacterial Screen</td>
<td>* See Below</td>
</tr>
<tr>
<td></td>
<td>Faeces Microscopy</td>
<td>NEG</td>
</tr>
<tr>
<td></td>
<td>Salmonella DNA</td>
<td>Not Detected</td>
</tr>
<tr>
<td></td>
<td>Shigella DNA</td>
<td>Not Detected</td>
</tr>
<tr>
<td></td>
<td>Campylobacter DNA</td>
<td>Not Detected</td>
</tr>
<tr>
<td></td>
<td>Clostridium difficile Detection</td>
<td>NEG</td>
</tr>
</tbody>
</table>
Case Presentation of Mr. AF

• Further investigation findings:
 – US-guided drainage of ~60 ml blood-stained pus from liver lesion
 • Cytology: Neutrophils and lymphocytes in a background of degenerate debris, no malignant cells seen
 • Microscopy and culture: Pus cells ++++, no organisms seen, no growth

• Antibiotic regimen alteration?
• Additional investigations?
Case Presentation of Mr. AF

• Further investigation findings:
 – *Entamoeba histolytica* serology: 320 - positive
 – Faeces parasite DNA PCR: Not detected

<table>
<thead>
<tr>
<th>Faeces Parasite Screen</th>
<th>See Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giardia intestinalis DNA</td>
<td>Not Detected</td>
</tr>
<tr>
<td>Cryptosporidium spp. DNA</td>
<td>Not Detected</td>
</tr>
<tr>
<td>D. fragilis DNA</td>
<td>Not Detected</td>
</tr>
<tr>
<td>E. histolytica DNA</td>
<td>Not Detected</td>
</tr>
</tbody>
</table>

 – Pus *Entamoeba histolytica* DNA PCR: Detected
 – Urine *Entamoeba histolytica* DNA PCR: Not detected
Case Presentation of Mr. AF

• Progress:
 – Ceftriaxone ceased
 – Metronidazole dose increased to 800 mg PO q8h for 10 days
Case Presentation of Mr. AF

- Progress:

![Graphs showing WCC and C Reactive Protein levels over time.](image)
Case Presentation of Mr. AF

• Sexual history (by myself):
 – Females only
 – 6 sexual partners in the past 6 months
 – Oral and vaginal sex
 – Condom use inconsistently
 – No sex worker contact
Case Presentation of Mr. AF

• Sexual history revisited (by Tom Gottlieb):
Case Presentation of Mr. AF

• Sexual history revisited (by Tom Gottlieb):
 – “I’ve been seeing an Asian sheila”
 – “She’s a “working lady” who travels between Sydney and Bourke on the train”
 – “But I don’t pay her”
 – “I haven’t put it in anyone’s bum”
Case Presentation of Mr. AF

- Further investigation findings:

<table>
<thead>
<tr>
<th>Date</th>
<th>Test Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-02-2017</td>
<td>Hepatitis A Antibodies IgM</td>
<td>Negative.</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>Hepatitis A Antibodies IgM Interp</td>
<td>Negative.</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>Hepatitis B Surface Antigens</td>
<td>Negative.</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>Hepatitis B Surface Antibodies</td>
<td>315 mIU/mL</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>Hepatitis B Core Antibodies</td>
<td>Positive.</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>Hepatitis C Antibodies</td>
<td>@ Positive.</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>HIV 1/2 Ab</td>
<td># Negative.</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>HIV 1/2 Ab</td>
<td># Negative.</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>Syphilis Summary</td>
<td>Negative.</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>Syphilis Antibodies EIA Screen</td>
<td>@ Positive</td>
</tr>
<tr>
<td>09-02-2017</td>
<td>HCV Supplementary Assay (EIA)</td>
<td>Positive.</td>
</tr>
</tbody>
</table>
Case Presentation of Mr. AF

• Further investigation findings:

<table>
<thead>
<tr>
<th>Date</th>
<th>Specimen Source</th>
<th>First Void Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-02-2017</td>
<td>Specimen Source</td>
<td>First Void Urine</td>
</tr>
<tr>
<td></td>
<td>Chlam.trachomatis DNA</td>
<td>* Not Detected</td>
</tr>
<tr>
<td></td>
<td>N.gonorrhoeae DNA</td>
<td>* Not Detected</td>
</tr>
</tbody>
</table>
Case Presentation of Mr. AF

• Progress
 – Discharged from hospital 10/2/17
 – Colonoscopy 22/2/17 – did not attend
 – CT abdomen + pelvis 10/3/17
 – Follow-up ID Clinic 13/4/17 for review and paromomycin – did not attend, no response despite multiple phone calls and voicemail messages
Case Presentation of Mr. AF

- CT abdomen + pelvis 10/3/17
 - Liver: Abscess size decreased (52 x 23 x 35 mm) in segment 6/7
 - Kidneys: Left renal abscess resolution
 - Caecum: Mural thickening resolved
Amoebiasis epidemiology

• Prevalence
 – 4-40% in endemic areas (Africa, Asia, Central and South Americas)
 – 0.2-10% in non-endemic areas

• Risk factors
 – Endemic area migration or travel
 – HIV infection
 – Institutionalisation
 – MSM
Amoebiasis microbiology

- *Entamoeba histolytica* ± *E. moshkovskii* pathogenic
- All other *Entamoeba* species (e.g. *E. dispar*) non-pathogenic
- Transmission
 - Faecal-oral
 - Sexual
 - Oral-anal sex
 - Oral-genital sex after genital-anal sex
 - Fomites (e.g. sex toys)
Amoebiasis prevalence

Intestinal parasitic infections in homosexual men: prevalence, symptoms and factors in transmission.

Keystone JS, Keystone DL, Proctor EM.

- 200 homosexual and 100 heterosexual male volunteers completed questionnaire and submitted a stool specimen in SAF fixative for OCP assessment in Toronto, Canada, May-August 1978

Table I—Prevalence of intestinal parasitic infection in homosexual and heterosexual men as determined by stool examination

<table>
<thead>
<tr>
<th>Parasite</th>
<th>No. (and %) of men infected</th>
<th>Heterosexual (n = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entamoeba histolytica or Giardia lamblia or both*</td>
<td>73 (36.5)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Nonpathogenic protozoa†</td>
<td>61 (30.5)</td>
<td>12 (12)</td>
</tr>
<tr>
<td>Ascaris lumbricoides</td>
<td>1 (0.5)</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>135 (67.5)†</td>
<td>16 (16)</td>
</tr>
</tbody>
</table>

*Of the homosexual and heterosexual men 54 (27%) and 1 (1%) respectively were infected with *E. histolytica* and 26 (13%) and 3 (3%) were infected with *G. lamblia*.
†In order of decreasing frequency, *Endolimax nana, Entamoeba hartmanni, Entamoeba coli, Iodamoeba buetschlii* and *Dientamoeba fragilis*.
‡Difference significant at P < 0.001 by chi-square analysis.

Table III—Relation of various factors to parasitic infection in the two groups

<table>
<thead>
<tr>
<th>Sexual orientation and factor*</th>
<th>Infectected</th>
<th>Uninfected</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterosexual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign travel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>3 (12)</td>
<td>22 (88)</td>
<td>25 (100)</td>
</tr>
<tr>
<td>No history</td>
<td>13 (17)</td>
<td>62 (83)</td>
<td>75 (100)</td>
</tr>
<tr>
<td>Homosexual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign travel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>46 (70)</td>
<td>20 (30)</td>
<td>66 (100)</td>
</tr>
<tr>
<td>No history</td>
<td>89 (66)</td>
<td>45 (34)</td>
<td>134 (100)</td>
</tr>
<tr>
<td>Type of household</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homosexual</td>
<td>68 (67)</td>
<td>33 (33)</td>
<td>101 (100)</td>
</tr>
<tr>
<td>Heterosexual</td>
<td>67 (68)</td>
<td>32 (32)</td>
<td>99 (100)</td>
</tr>
<tr>
<td>No. of sexual partners in previous 6 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>11 (50)</td>
<td>11 (50)</td>
<td>22 (100)</td>
</tr>
<tr>
<td>> 10</td>
<td>44 (71)</td>
<td>18 (29)</td>
<td>62 (100)</td>
</tr>
<tr>
<td>Cleansing before anal sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Done</td>
<td>65 (61)</td>
<td>41 (39)</td>
<td>106 (100)</td>
</tr>
<tr>
<td>Not done</td>
<td>70 (74)</td>
<td>24 (26)</td>
<td>94 (100)</td>
</tr>
</tbody>
</table>

*The only factor significantly correlated (P = 0.05) with infection was a lack of cleansing before anal sex.
Amoebiasis prevalence in Sydney, Australia

PCR detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in stool samples from Sydney, Australia.

Fotedar R¹, Stark D, Beebe N, Marriott D, Ellis J, Harkness J.

- 5921 stool specimens from 110 patients (3 females, 107 males) with diarrhoea submitted to SVH January 2003-June 2006

<table>
<thead>
<tr>
<th>TABLE 1. Clinical details of patients positive for E. histolytica by PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient age (yr) and sex</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>36, male</td>
</tr>
<tr>
<td>35, male</td>
</tr>
<tr>
<td>31, male</td>
</tr>
<tr>
<td>53, male</td>
</tr>
<tr>
<td>57, male</td>
</tr>
</tbody>
</table>
Amoebiasis prevalence in Sydney, Australia

Prevalence of enteric protozoa in human immunodeficiency virus (HIV)-positive and HIV-negative men who have sex with men from Sydney, Australia.

- Stool specimens submitted to SVH for OCP testing from 1,246 MSM (628 HIV-positive, 618 HIV-negative) and 622 non-MSM males attending General Practices March 2003-February 2006

<table>
<thead>
<tr>
<th>Parasite</th>
<th>No. (%) MSM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV- (n = 628)</td>
</tr>
<tr>
<td>Potential pathogens</td>
<td></td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td></td>
</tr>
<tr>
<td>E. dispar complex†‡§</td>
<td>34 (5.4)</td>
</tr>
<tr>
<td>Giardia intestinalis</td>
<td>17 (3)</td>
</tr>
<tr>
<td>Cryptosporidium species§</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td>Dientamoeba fragilis</td>
<td>5 (0.8)</td>
</tr>
<tr>
<td>Blastocystis hominis§¶</td>
<td>135 (21)</td>
</tr>
<tr>
<td>Non-pathogenic</td>
<td></td>
</tr>
<tr>
<td>Endolimax nana†</td>
<td>74 (12)</td>
</tr>
<tr>
<td>Entamoeba coli‡</td>
<td>30 (5)</td>
</tr>
<tr>
<td>Entamoeba hartmanni‡§</td>
<td>27 (4)</td>
</tr>
<tr>
<td>Iodamoeba butschlii</td>
<td>24 (4)</td>
</tr>
<tr>
<td>Enteromonas hominis§</td>
<td>9 (1.4)</td>
</tr>
<tr>
<td>Chilomastix mesnili</td>
<td>6 (0.9)</td>
</tr>
<tr>
<td>Trichomonas hominis</td>
<td>0</td>
</tr>
<tr>
<td>Retortamonas hominis</td>
<td>0</td>
</tr>
</tbody>
</table>
Amoebiasis sexual transmission in non-MSM patients

- Contact tracing of 7 cases of amoebiasis in 4 bisexual females, 1 homosexual female, and 2 heterosexual males engaging in oral-anal sex and genital-anal sex

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age, years; sex</th>
<th>Disease</th>
<th>Date of diagnosis</th>
<th>Microscopic analysis of stool</th>
<th>Antigen detection</th>
<th>Serological titer</th>
<th>Travel history (date)</th>
<th>Sexual contacts</th>
<th>Sexual preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40; F</td>
<td>Liver abscess</td>
<td>Feb 2008</td>
<td>ND</td>
<td>ND</td>
<td>3200</td>
<td>UK, Germany, Italy (Aug–Sep 2007)</td>
<td>C, G, E</td>
<td>Bisexual</td>
</tr>
<tr>
<td>B</td>
<td>28; F</td>
<td>Asymptomatic; RLQ abdomen lymphadenopathy</td>
<td>Apr 2008</td>
<td>Entamoeba</td>
<td>ND</td>
<td>ND</td>
<td>UK, Germany, Italy (Aug–Sep 2007)</td>
<td>C, D, G</td>
<td>Bisexual</td>
</tr>
<tr>
<td>C</td>
<td>28; M</td>
<td>Liver abscess</td>
<td>May 2008</td>
<td>ND</td>
<td>ND</td>
<td>12,800</td>
<td>UK, Germany, Italy (Aug–Sep 2007)</td>
<td>A, B, D</td>
<td>Heterosexual</td>
</tr>
<tr>
<td>D</td>
<td>26; F</td>
<td>Asymptomatic</td>
<td>Jun 2008</td>
<td>Entamoeba</td>
<td>ND</td>
<td>800</td>
<td>None</td>
<td>C, B, G</td>
<td>Bisexual</td>
</tr>
<tr>
<td>F</td>
<td>32; F</td>
<td>Asymptomatic</td>
<td>Oct 2008</td>
<td>Entamoeba</td>
<td>ND</td>
<td>None</td>
<td>None</td>
<td>G</td>
<td>Homosexual</td>
</tr>
<tr>
<td>G</td>
<td>30; F</td>
<td>Asymptomatic</td>
<td>Sep 2008</td>
<td>Entamoeba</td>
<td>Yes</td>
<td>1600</td>
<td>Italy (Dec 2007)</td>
<td>A, B, D, F, H</td>
<td>Bisexual</td>
</tr>
<tr>
<td>H</td>
<td>30. M</td>
<td>Asymptomatic</td>
<td>Sep 2008</td>
<td>Negative*</td>
<td>ND</td>
<td>ND</td>
<td>None</td>
<td>G</td>
<td>Heterosexual</td>
</tr>
</tbody>
</table>
Amoebiasis sexual transmission in non-MSM patients

A possible cluster of sexually transmitted Entamoeba histolytica: genetic analysis of a highly virulent strain.

Salit IE¹, Khairnar K, Gough K, Pillai DR.
Amoebiasis clinical features

• Asymptomatic carriage (~90%)
 – 5-10% risk of progression to disease at 12 months

• Intestinal disease (~10%)
 – Diarrhoea (94-100%), haematochezia (94-100%), abdominal pain (12-80%), weight loss (~50%), and fever (~40%)
 – Amoeboma, fistulae, necrotic colitis, and toxic megacolon (rare)

• Extra-intestinal disease (~1%)
 – Liver abscess (most common, haematogenous spread)
 – Empyema and/or lung abscess (liver abscess rupture > haematogenous spread)
 – Pericarditis (liver abscess rupture > haematogenous spread)
 – Brain abscess (haematogenous spread)
 – Perianal disease (direct inoculation)
Amoebic kidney abscess

• Literature review
 – Embase, Google, MedLine, and PubMed
55 M migrant from Mali in France
No comorbidities
Anaemia, melaena, and weight loss for ~3 months
CT demonstrated right colon mass
Right hemicolecotomy for presumed colorectal cancer
Septic shock unresponsive to antibiotic therapy for 6 days post-surgery
CT demonstrated liver and right kidney abscesses
Liver abscess drainage and right nephrectomy
E. histolytica trophozoites identified in colon, kidney, and liver abscesses
E. histolytica serology positive
Metronidazole for 30 days curative
First report of genitourinary amoebiasis in Thailand.

Saensiriphan S¹, Rungmuenporn L², Phiromnak P², Yingyeun S², Klayjunteuk S³, Pengsakul T¹.

- 63 F in Thailand
- No comorbidities
- Back pain, diarrhoea, dysuria, and fevers
- *E. histolytica* trophozoites identified in faeces and urine
- No imaging or serology described
- Metronidazole for 7 days curative
Amoebic kidney abscess

<table>
<thead>
<tr>
<th>Patient age and gender</th>
<th>Comorbidities</th>
<th>Clinical features</th>
<th>Imaging modalities</th>
<th>Microbiology investigations</th>
<th>Curative treatment</th>
<th>Source</th>
</tr>
</thead>
</table>
Renal amoebic abscess detected on grey-scale ultrasonography. A case report.

Andrew WK, Thomas RG.

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Site and No. of abscesses</th>
<th>No. of cases</th>
<th>Probable route of infection</th>
<th>Hepatic abscess</th>
<th>Result</th>
<th>Quoted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulz</td>
<td>1913</td>
<td>Renal (multiple)</td>
<td>2</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>Kirsh and Diaz-Riviera</td>
</tr>
<tr>
<td>Hartmann and Keppel</td>
<td>1923</td>
<td>Renal</td>
<td>1</td>
<td>Operative drainage of liver abscess</td>
<td>Yes</td>
<td>?</td>
<td>As above</td>
</tr>
<tr>
<td>Vichrew</td>
<td>1924</td>
<td>Renal (miliary cortical)</td>
<td>1</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>As above</td>
</tr>
<tr>
<td>Casco</td>
<td>1932</td>
<td>Renal</td>
<td>1</td>
<td>?</td>
<td>?</td>
<td>Amoebic pus in urine</td>
<td>As above</td>
</tr>
<tr>
<td>Kirsh and Diaz-Riviera</td>
<td>1943</td>
<td>Perinephric</td>
<td>1</td>
<td>Lymphatic</td>
<td>Liver enlarged. No abscess</td>
<td>Surgically drained and treated with emetine</td>
<td></td>
</tr>
<tr>
<td>Ross</td>
<td>1944</td>
<td>Perinephric</td>
<td>1</td>
<td>?</td>
<td>?</td>
<td>Treated with emetine</td>
<td></td>
</tr>
<tr>
<td>Andrew and Glyn Thomas</td>
<td>1979</td>
<td>Renal lower pole — single</td>
<td>1</td>
<td>Amoebic lung abscess</td>
<td>Nil</td>
<td>Aspirated and treated with metronidazole</td>
<td></td>
</tr>
</tbody>
</table>
Case Presentation of Mr. AF

• Why present this case?
 – Rare complication of an uncommon infection
 – Sexual history evolution
 • No contact with sex workers
 ➔ My partner is a sex worker from South East Asia
References

• Foteder R. *et al.*. PCR detection of *Entamoeba histolytica, Entamoeba dispar* and *Entamoeba moshkovskii* in stool samples from Sydney, Australia. *J Clin Microbiol*. 2007. 45: 1035-1037
• UpToDate®