Introduction to MALDI-TOF Mass Spectrometry

Principles of MALDI-TOF
Overview

• Matrix Assisted Laser Desorption/Ionisation – Time of Flight (MALDI-TOF) mass spectrometry used to detect and characterize mixtures of organic molecules.
• In micro used as a rapid, accurate and cost-effective method for ID of microbes
• 2 commercially available:
 • Vitek MS (bioMerieux)
 • MALDI Biotyper CA system (Bruker Daltonics)
Mass Spectrometry

• Mass spectrometry (MS) measures mass-to-charge ratio (m/Q) of ions.

• Results presented as a mass spectrum - a plot of the ion signal as a function of the mass-to-charge ratio.

• Spectra used to determine
 • elemental or isotopic signature
 • the masses of particles
 • the chemical ID or structure
Three components of MS

• An ion source
 • Sample (solid, liquid, or gaseous) is ionized - for solids via electrons or MALDI

• A mass analyzer
 • Ions then separated based on mass-to-charge ratio
 • Done by acceleration and subjecting to an electric or magnetic field
 • Ions with a lower mass will reach the detector first.

• A detector
 • records either charge or current produced when ion passes by or hits a surface
 • produces a mass spectrum (mass-to-charge ratio)
 • Usually an electron multiplier
MALDI – TOF MS

1. An ion source
 • Laser and ionization chamber to ionize sample and transfer into a gas phase
 • Uses laser energy-absorbing matrix to create ions from large molecules

2. A mass analyser
 • separates ionized analytes according to their mass (all same charge)
 • TOF uses electric field to accelerate ions & measure time to reach detector.

3. A detection device to monitor separated ions

Add Formic Acid and Dry; Add Matrix and Dry
Procedure

• Combine isolated colony (analyte), formic acid & matrix on MALDI plate

• Solvents vaporize, leaving only the recrystallized matrix with analyte embedded
Matrix

• Matrix isolates molecules from each other, protecting them from fragmentation and enabling desorption by laser energy

• Consists of:
 • Small crystalised acid molecules – usually sinapinic acid, alpha-cyano (alpha matrix) or DHB acid.
 • Purified water
 • Organic solvent (alcohol or acetonitile)
 • Trifluoroacetic acid 2.5%
Ion Source - Laser

- Uses UV lasers (nitrogen laser light, wavelength 337nm)
- Laser pulses fired at the matrix crystals in the dried-droplet spot.
- Matrix absorbs the laser energy converting it to an ionised state
- Charge is transferred to analyte (random collision in the gas phase)
- Ionised analyte and matrix molecules are desorbed from the plate.

Shimadzu, Principles of MALDI-TOF MS, 2020
Mass Analyser – Time of Flight

• Ionized microbial molecules accelerated through a positively charged electrostatic field into time of flight (TOF) tube
• Inside vacuum tube ions travel toward an ion detector
• Small analytes travel the fastest (generating mass spectrum)
• Ions emerge from the mass analyser and hit the ion detector → generate a mass spectrum representing the number of ions of a given mass impacting the detector over time

Carroll, MCM 12 ed, 2019
Results

• Mass spectrum provides profile unique to individual types of microbes, with peaks specific to genera and species
• Once acquired compared to a database of reference spectra
• A value - percentage or score is produced
Results
Results

• ID is started immediately after mass spectrum available.

• During the run the appearance of sample and QC positions in the MALDI plate display reflects the success of the measurement and ID a each position
 • If spectrum measurement successful - left half of the sample is green.
 • If measurement fails - left half of the sample is orange
 • Colouring of right half of sample position indicates the score value of ID

Bruker, MBT Compass User Manual, 2018
Table of Detected Species

<table>
<thead>
<tr>
<th>ID</th>
<th>Position</th>
<th>Detected Species</th>
<th>Score</th>
<th>Comment</th>
<th>Description</th>
<th>Confidence</th>
<th>Export State</th>
<th>Species to Export</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td></td>
<td>Escherichia coli</td>
<td>2.08</td>
<td>closely related to Shigella and not E.</td>
<td>Description of A1</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of A2</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of A3</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of A4</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of A5</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of A6</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of A7</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of A8</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of B1</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of B2</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of B3</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td>Description of B4</td>
<td>high</td>
<td><Best Match></td>
<td></td>
</tr>
</tbody>
</table>

Bruker, MBT Compass User Manual, 2018
MALDI Scores

• Higher the log (score), higher the similarity between mass spectrum of isolate & the database entry in the reference library

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (A)</td>
<td>Best match is a high-confidence ID
Second-best match is:
• high-confidence ID identical sp ID to best match
• low-confidence ID identical to genus in best match
• non-identification</td>
</tr>
<tr>
<td>Low (B)</td>
<td>Requirements for high consistency not met.
Best match is a high- or low-confidence ID
Second-best match is:
• high- or low-confidence ID identical to genus in best match
• non-identification</td>
</tr>
<tr>
<td>None (C)</td>
<td>Requirements for high or low consistency not met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>Interpretation</th>
<th>Symbols</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00 - 3.00</td>
<td>High Confidence Identification</td>
<td>(+++)</td>
<td>green</td>
</tr>
<tr>
<td>1.70 - 1.99</td>
<td>Low Confidence Identification</td>
<td>(+)</td>
<td>yellow</td>
</tr>
<tr>
<td>0.00 - 1.69</td>
<td>No Organism Identification Possible</td>
<td>(-)</td>
<td>red</td>
</tr>
</tbody>
</table>

Bruker, MBT Compass User Manual, 2018
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Sample ID</th>
<th>Organism (best match)</th>
<th>Score Value</th>
<th>Organism (second best match)</th>
<th>Score Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (+++)(A)</td>
<td>ID of A1</td>
<td>Escherichia coli</td>
<td>2.68</td>
<td>Escherichia coli</td>
<td>2.30</td>
</tr>
<tr>
<td>A2 (+++)(A)</td>
<td>ID of A1</td>
<td>Escherichia coli</td>
<td>2.75</td>
<td>Escherichia coli</td>
<td>2.35</td>
</tr>
<tr>
<td>A3 (+++)(A)</td>
<td>ID of A3</td>
<td>Cupriavidus necator</td>
<td>2.61</td>
<td>Cupriavidus necator</td>
<td>2.15</td>
</tr>
<tr>
<td>A4 (+++)(A)</td>
<td>ID of A4</td>
<td>Staphylococcus aureus</td>
<td>2.29</td>
<td>Staphylococcus aureus</td>
<td>2.27</td>
</tr>
<tr>
<td>A5 (+++)(A)</td>
<td>ID of A5</td>
<td>Escherichia coli</td>
<td>2.69</td>
<td>Escherichia coli</td>
<td>2.30</td>
</tr>
<tr>
<td>A6 (-)(C)</td>
<td>ID of A6</td>
<td>No Organism Identification Possible</td>
<td>1.41</td>
<td>No Organism Identification Possible</td>
<td>1.38</td>
</tr>
<tr>
<td>A7 (+++)(A)</td>
<td>ID of A7</td>
<td>Proteus mirabilis</td>
<td>2.67</td>
<td>Proteus mirabilis</td>
<td>2.66</td>
</tr>
<tr>
<td>A8 (-)(C)</td>
<td>ID of A8</td>
<td>No Organism Identification Possible</td>
<td>1.10</td>
<td>No Organism Identification Possible</td>
<td>1.10</td>
</tr>
<tr>
<td>ID</td>
<td>Position</td>
<td>Detected Species</td>
<td>Score</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---------------------------------------</td>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ID of A5</td>
<td>A5</td>
<td>Escherichia coli</td>
<td>2.69</td>
<td>closely related to Shigella and no...</td>
<td></td>
</tr>
<tr>
<td>ID of A6</td>
<td>A6</td>
<td>No Organism Identification Possible</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID of A7</td>
<td>A7</td>
<td>Proteus mirabilis</td>
<td>2.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detected Species

- Proteus mirabilis DSM 18254 DSM
- Proteus mirabilis 9482_2 CHB
- Proteus mirabilis DSM 30115 DSM
- Proteus mirabilis DSM 46227 DSM
- Proteus mirabilis DSM 788 DSM
- Proteus mirabilis DSM 50903 DSM
- Proteus mirabilis RV412_A1_2010_06b LBK
- Proteus mirabilis 13210_1 CHB
- Proteus mirabilis (PX) 22086112 MLD
- Proteus vulgaris DSM 13625 DSM

- ID of A8 | A8 | No Organism Identification Possible | 1.10 | is a member of Pseudomonas pu... |
Advantages

• Rapid (≤3 minutes per isolate)
• Inexpensive - low reagent cost
• Small amounts of organism are required
• Direct sample ID possible
• Reduced labour
• Accurate ID

<table>
<thead>
<tr>
<th>Microorganism group</th>
<th>Number of processed samples</th>
<th>Number of correct identifications</th>
<th>Number of incorrect identifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-fermenting Gram-negative bacteria</td>
<td>229</td>
<td>215 (93.89%)</td>
<td>14 (6.11%)</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>265</td>
<td>263 (99.25%)</td>
<td>2 (0.75%)</td>
</tr>
<tr>
<td>Other Gram-negative bacteria</td>
<td>204</td>
<td>195 (95.59%)</td>
<td>9 (4.41%)</td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td>230</td>
<td>224 (97.39%)</td>
<td>6 (2.61%)</td>
</tr>
<tr>
<td>Yeasts</td>
<td>225</td>
<td>219 (97.33%)</td>
<td>6 (2.67%)</td>
</tr>
<tr>
<td>Total number</td>
<td>1153</td>
<td>1116 (96.79%)</td>
<td>37 (3.21%)</td>
</tr>
</tbody>
</table>

* Of the 1153 samples, 0.61% (7 samples) provided low-confidence identifications; 1.91% (22 samples) could not be identified; and 0.69% (8 samples) gave a false result.
Limitations

• Databases are proprietary unlike publicly available sequence databases
• Difficulties in ID with some organisms
• Difficulty analysing mixed cultures
• Identifying organisms from liquid cultures
• Low identification scores - repeat testing for 10% of isolates
• Growth on some media may be associated with low scores
• Small/mucoid colonies may fail ID
• ID of biosafety level 3/4 organisms
• Requires room temperature (20-25 °C)
• Human error
Difficulties in Identification

• Misidentification rare
• Can occur with closely related organisms
 • E. coli and Shigella
 • Discrimination between species from same complex eg. E cloacae complex
• Salmonella can only be ID to genus level - No typing
• Difficulties with some species - alpha haemolytic strep
• Mycobacteria & filamentous fungi
Considerations for other organisms

• Mycobacteria:
 • Requires processing to kill tested bacteria, break down cell envelopes, disrupt clumped cells
 • Can ID most clinically relevant species
 • MTB complex ID to complex level only
 • Some related mycobacterium species not well differentiated (M. chimaera and M. intracellulare)

• Enhanced databases ID Nocardia – often specific extraction processes needed

• Fungi:
 • Can identify yeast well
 • Filamentous fungi limited - variable phenotypes & protein spectra vary with growth conditions
 • Available for aspergillus, fusarium & mucorales
Common Sources of Error

• Colony inoculation in erroneous target plate locations
• Testing impure colonies
• Smearing between spots
• Failure to clean target plates
• Entry of wrong results
Conclusion

• MALDI-TOF MS utilizes:
 • Laser & matrix as an ion source
 • TOF (electric field) as a mass analyser
 • Ion detector

• Provides a rapid, accurate and cost-effective method for ID of many bacteria & yeast

• Several limitations which operators need to be aware of when reporting & troubleshooting