Urinary Casts

Prepared by:

Dr Henry Butt, Senior Microbiology Scientist, Hunter Area Pathology Service

Newcastle, Australia

1998

Urinary Casts: Histology

Urinary Casts: General Properties

Formation:

 proteins (plasma, tubular cellular debris) precipitate and gel in tubular lumina

Origin:

originate in the parenchyma of the kidney

Shape:

- shaped by the tubular lumen of the nephron
- may be straight or convoluted
- parallel sides and round blunted ends

Urinary Casts: Types

Two broad categories:

Physiologic casts:

- excreted by healthy volunteers after administration of diuretics or strenuous physical exertion.
- generally do not have pathological significance.

Pathological casts:

- excreted by patients with kidney disease
- contain various protein fractions derived from blood as well as mucoprotein.

Physiologic Casts: Hyaline (1)

Description:

- cylindrical, semisolid, transparent-formed elements
- scarcely visible with conventinal brightfield microscopy & requires: condenser lowered and iris diaphragm nearly closed
- appear more distinctly with phase contrast microscopy

Differential diagnosis:

- often confused with mucous threads, which are
 - narrower, and
 - frequently twisted.

Formation: Predisposing factors include:

- decreased urine flow
- low pH
- high solute concentration
- high protein concentration

Physiologic Casts: Hyaline (2)

Caution:

 alkaline urine, resulting from bacterial proliferation, will dissolve casts

Refrigeration:

- remain visible in urine if specimens
 - stored at 4C
 - for periods of up to 48hr

Clinical Significance:

- excretion do not accompany with proteinuria
- excretion in response to hard physical exercise

Physiologic Casts: Granular (1)

Description:

- granules in a hyaline cast matrix
- granules derived either from plasma proteins or from degenerating cellular components.
- Can be recognized under bright light microscopy

- originate within the nephron
- form from 2 major sources:
 - breakdown of cellular material
 - direct aggregation of serum proteins

Physiologic Casts: Granular (2)

Caution:

alkaline urine will dissolve casts

Refrigeration:

- remain visible in urine if specimens
 - stored at 4C
 - for periods of up to 48hr

Clinical Significance:

- In small numbers, they are generally regarded as physiological
- excretion in response to hard physical exercise
- In large numbers, can be associated with renal parenchymal disease.

Pathological Casts: Epithelial

Description:

- often mistaken as white cell casts
- usually contains two parallel rows of cells implies origin in one segment of damaged tubule

- exfoliation or desquamation of renal lining cells
- cells remain stasis in tubules which conform to the tubular mold.

Pathological Casts: Epithelial (2)

Pathological Significance:

- parenchymal disease
 - acute tubular necrosis,
 - interstitial nephritis
 - eclampsia
 - amyloidosis
- viral diseases (e.g. CMV)
- heavy metal poisoning
- ethylene glycol & salicylate intoxication
- In renal transplantation; commonly seen during renal allograft rejection

Epithelial vs White Cell cast

Cells irregularly spaced

2 Parallel rows of cells

Epithelial cast

White cell cast

Pathological Casts: White cell (1)

Birch et al. Urine Microscopy, 1994

Description:

- white cells adhering to hyaline cast, or
- white cell clot in the shape of a tubular mold

- White cell enter through and between tubular epithelial cells.
- As a result of interstitial inflammation in the kidney

Pathological Casts: White cell (2)

Pathological Significance:

- diagnostic for
 - bacterial infections e.g. pyelonephritis
 - non-infective inflammatory disease:
 - Lupus nephritis
 - glomerulonephritis
 - interstitial nephritis
 - nephrotic syndrome

Pathological Casts: Red cell (1)

Description:

Prerequisite for the identification of red cell cast is:

(1) red cell outlines can be sharply defined in at least part of the hyaline cast matrix

Birch et al. Urine Microscopy, 1994

Pathological Casts: Red cell (2)

Description (continued):

(2) red cell in one end of the granular matrix and hyaline matrix at the opposite end of the same cast

Pathological Casts: Red cell (3)

Description (continued):

(3) red cell cast composed of degenerated red cells and granular appearing haemoglobin pigment

Pathological Casts: Red cell (4)

Description (continued):

(4) Red cell clots:

- fibrinogen enters the tubule from damaged glomeruli is converted to fibrin
- red cell cast is formed when red cells are trapped within the fibrin matrix.

Pathological Casts: Red cell (4)

Pathological Significance:

 blood in a renal cast is an indication of bleeding within the nephron associated with active glomerulitis

- glomerular damage related to immune injury
- allows red cells to escape into the tubule.
- concomitant proteinuria are optimal for cast formation.

Pathological Casts: Waxy Cast

Description:

- can been seen under brightlight microscopy
- highly refractive
- homogeneously pale yellow in appearance
- margins are sharp
- ends are blunt and cracks

Formation:

• final phase of granular (fine) casts

Pathological Significance

- represent tubular inflammation & degeneration
- end stage of degeneration of finely granular casts
- most frequently seen in patients with chronic renal failure.

